If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15m^2-12m=0
a = 15; b = -12; c = 0;
Δ = b2-4ac
Δ = -122-4·15·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-12}{2*15}=\frac{0}{30} =0 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+12}{2*15}=\frac{24}{30} =4/5 $
| 5x-(x-4)=3x+4 | | 20=3x+6+x | | 13=-6x-7x | | 175+0.08m=125+0.25m | | 6m=12=3 | | R(x)=120+18x-3x^2 | | -3(4x-1)=93 | | 1/9x+4=11 | | 8+3(-6x-8)=110 | | -4x+5x=9+6x | | 9(42)-9(4)=9(30)+9(v) | | -4x+5=9+4x | | 2.5÷10=x÷50 | | -4x+5=9+6x | | 5x+3=8x-7 | | 5(45+5)=5(v) | | 9^x+3=4*3^x | | -11b=33 | | 3(2x=3)=6x+9 | | (x^2-10)=√x^2-98 | | 22+44x=54 | | (x^2-10)=√(x^2-98) | | 0=(x+10)(x-6) | | x=200-(168+x) | | 3.2x-2.3=5.8 | | 4x-10=50+x | | 26+31x=90 | | 54/3+x/3+89/3=76 | | 9x+3=4*3x | | 9x+3=4.3x | | 6-1y=30 | | 16n+2-6n=10n-4 |